Sørensen Lab
My group has expertise in studying the molecular and cellular mechanisms of neurotransmitter release in chemical synapses and in neuroendocrine cells.
The human brain contains up to 1015 (i.e. a quadrillion) synaptic connections between its neurons. Synaptic transmission is triggered by the arrival of an action potential, which leads to fusion of synaptic vesicles with the plasma membrane within a fraction of a millisecond. Synaptic transmission is actively regulated over the long and short term, which allows information processing, learning and memory. Mutation, dysregulation, or other insults to the synapse can lead to a number of brain diseases characterized by unbalanced or ineffective network activity, such as epilepsy, Intellectual Disability, and schizophrenia, whereas other synaptic problems lead to neurodegeneration. These diseases are sometimes referred to as ‘synaptopathies’, because they start at the synapse.
My group investigate the inner workings of the molecular machinery for neurotransmitter release, and the defects that lead to disease. We do optical and electrophysiological measurements on living cells, and combine this with genetic and molecular biology methods (mouse knockouts, viral expression). We work with the proteins, which are directly linked to exocytosis, i.e. SNARE-proteins, synaptotagmins, Munc18, Munc13 etc, and with diseases caused by insults to these proteins (denoted SNAREopathies; Verhage and Sørensen, 2020, Neuron 107, 22-37).
i) identifying the detailed mode-of-action of the machinery for neurotransmitter release, including the mechanism by which Ca2+ triggers exocytosis. We are also interested in the molecular differences between different (synchronous, asynchronous and spontaneous) release phases, which are necessary to keep balanced network activity,
ii) understanding how the release mechanisms are regulated physiologically, for instance by G-protein coupled receptors leading to phosphorylation, or by lipids (phosphatidylinositol-4,5-bisphosphate, diacylglycerol), to ensure exocytotic and presynaptic robustness and plasticity,
iii) determine how these mechanisms are affected by disease mutations in the release machinery, and how this leads to epileptic encephalopathy.
- Houy S, Martins J.S, Lipstein N, Sørensen J.B. Phorbolester-activated Munc13-1 and ubMunc13-2 exert opposing effects on dense-core vesicle secretion. Elife 11, e79433.
- Tawfik B., Martins J.S., Houy S., Imig C., Pinheiro P.S., Wojcik S.M., Brose N., Cooper B.H., Sørensen J.B. (2021). Synaptotagmin-7 places dense-core vesicles at the cell membrane to promote Munc13-2- and Ca2+-dependent priming. Elife 10:e64527.
- Verhage M., Sørensen J.B. (2020). SNAREopathies: Diversity in Mechanisms and Symptoms. Neuron 107(1):22-37.
- Gowrisankaran S., Houy S., Peña del Castillo J.G., Steubler V., Gelker M., Kroll J., Pinheiro P.S., Schwitters, D., Halbsgut N., Pechstein A., van Weering J., Maritzen, T., Haucke V., Raimundo N., Sørensen J.B.*, Milosevic I.* (2020). Endophilin-A controls recruitment, priming and fusion of neurosecretory vesicles.*: Corresponding authors. Nature Comm. 11:1-18.
- Kobbersmed JRL, Grasskamp AT, Meida J, Böhme MA, Ditlevsen S, Sørensen JB*, Walter AM*. (2020). Rapid regulation of vesicle priming explains synaptic facilitation despite heterogeneous vesicle:Ca2+ channel distances * Corresponding authors. Elife pii: e51032.
- Ruiter M., Kádková A, Scheutzow A, Malsam J. Söllner TH and Sørensen J.B. (2019). An electrostatic energy barrier for SNARE-dependent spontaneous and evoked synaptic transmission. Cell Reports 26: 2340-2352.
- Kádková A., Radecke J., and Sørensen J.B. (2018). The SNAP-25 protein family. Neuroscience 420:50-71. (Invited review)
- Houy S., Groffen A.J., Ziomkiewicz I., Verhage M., Pinheiro P.S., and Sørensen J.B. (2017). Doc2B acts as a calcium sensor for vesicle priming requiring synaptotagmin-1, Munc13-2 and SNAREs. Elife 6: e27000.
- Walter A.M.*,Müller R., Tawfik B., Wierda K.D.B., Pinheiro P.S., Nadler A., McCarthy A.W., Ziomkiewicz I., Kruse M., Reither G., Rettig J., Lehmann M., Haucke V., Hille B., Schultz C.* and Sørensen J.B.* (2017) Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis. (*: corresponding authors). Elife 6: e30203.
- Schupp M., Malsam, J., Ruiter M., Scheutzow A., Wierda K.D.B., Söllner T.H., and Sørensen J.B. (2016). Interactions between SNAP-25 and synaptotagmin-1 are involved in vesicle priming, clamping spontaneous and eliciting evoked neurotransmission. Neurosci. 36:11865-11880.
- Walter A.M., Kurps J., de Wit H., Schöning S., Toft-Bertelsen T.L., Lauks J., Ziomkiewicz I., Ngatchou Weiss A., Schulz A., Fischer von Mollard G., Verhage M., and Sørensen J.B. (2014). The SNARE protein vti1a functions in dense-core vesicle biogenesis. EMBO J 33,1681-1697.
- Pinheiro P.S., De Wit H., Walter A.M., Groffen A.J., Verhage M., and Sørensen J.B. (2013). Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release. Neurosci. 33, 16459-16470.
- Mohrmann R., De Wit H., Connell E., Pinheiro P.S., Leese C., Bruns D., Davletov B., Verhage M., and Sørensen J.B. (2013). Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering. Neurosci. 33, 14417-14430.
- Mohrmann R., De Wit H., Verhage M., Neher E., and Sørensen J.B. (2010). Fast vesicle fusion in living cells requires at least three SNARE-complexes. Science 330, 502-505.
Education
2006 Habilitation in pre-clinical physiology at Human Medicin, Georg August University zu Göttingen. Thesis: Untersuchungen zur molekularen Grundlage der Ca++-abhängigen Katecholaminsekretion von Nebennierenchromaffinzellen (Prof. Dr. Diethelm Richter).
1999 Ph.D. August Krogh Institute, University of Copenhagen. Thesis: Biophysical studies of ion channels. (Prof. Dr. Erik H. Larsen).
1996 M.Sc. in Biology (with highest distinction), and Mathematics (Minor degree) from University of Copenhagen (Prof. Dr. Erik H. Larsen).
Positions
2022- Scientific Director for Neuroscience Academy Denmark
2009- Professor at the Department of Neuroscience (from 2009-2017 called Dep. of Neuroscience and Pharmacology), University of Copenhagen.
2005-2008 Research Group Leader, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany.
2000-2005 Post-doc, Abteilung Membranbiophysik, Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany. (Prof. Dr. Erwin Neher).
1999 Post-doc, August Krogh Institute, University of Copenhagen (Prof. Dr. Erik Hviid Larsen).
1996-1999 Ph.D. student, August Krogh Institute, University of Copenhagen (Prof. Dr. Erik Hviid Larsen).
Professional affiliations and activities (selection)
2020- Member of the Independent Research Fund Denmark; Health and Disease.
2014- Deputy Head of Department, Department of Neuroscience previously Dep. of Neuroscience and Pharmacology.
2014-2017 Head of section, Neuronal Signaling Lab, Dep. of Neuroscience and Pharmacology.
2017- Member of the Faculty Liason Committee (FSU), Faculty of Health and Medical Sciences (representing management).
2017- Member of the editorial board, Journal of Biological Chemistry.
2016- Member of the Royal Danish Society for Sciences and Letters.
2006-2008 Faculty member of the International Max-Planck-Research School in the Neurosciences, and the Georg August School of Science (GAUSS), Göttingen, Germany.
2003- Member of Biophysical Society.
2002- Member of Society for Neuroscience.
Awards (selection)
2023-2027 Lundbeckfonden, € 1.23 mio, collaborative grant (co-PI)
2020-2022 Independent Research Fund Denmark, € 386,000 (PI).
2020-2021 Novo Nordisk Foundation, € 224,000 (PI).
2019-2024 Lundbeckfonden, € 2 mio, “Neurodevelopmental disorders and the synapse” (PI, coordinator)
2009-2015 The Lundbeck foundation: Junior group leader Scholarship 2008.
2008 Novo Nordisk Seniorforskerstipendiet 2008. The stipend was declined due to an overlapping grant from Lundbeckfonden.
2005-2007 Deutsche Forschungsgemeinscaft: ‘The own position‘ SO 708/1-1&2.
1996 Gold medal, University of Copenhagen.
Patch-clamp in vitro (incl. capacitance measurements, measurement of synaptic transmission)
Ca2+-measurements (optical)
Ca2+-uncaging, lipid uncaging (optical uncaging)
Amperometry (chrono-voltammetry)
Cell culture (incl. adrenal chromaffin cells, INS-1 cells, neurons, self-innervating (autaptic) neurons on astrocyte islands, immortalized cell lines for viral packaging(293FT, BHK))
Life fluorescence imaging
Confocal microscopy, superresolution imaging (STORM, SIM)
cryo-electron microscopy and tomography
Viral vectors (Semliki Forest virus, lentivirus – we do our own packaging of viruses)
DNA methods (plasmid preparation, mutagenesis, subcloning, sequencing, etc.)
Western blot, immunostaining, etc.
Jakob Balslev Sørensen
ORCID: 0000-0001-5465-3769
Scientometry: 6506 citations, H-index = 40, i10-index = 70. (Mar 2nd 2022).
(Google Scholar)
2023
81. Radecke J., Seeger R., Kádková A., Laugks U., Khosrozadeh A., Goldie K.N., Lucic V, Sørensen J.B.*, Zuber B* Morphofunctional changes at the active zone during synaptic vesicle exocytosis. * Corresponding authors. EMBO Rep. – in press
2022
80. Houy S, Martins J.S, Lipstein N, Sørensen J.B. Phorbolester-activated Munc13-1 and ubMunc13-2 exert opposing effects on dense-core vesicle secretion. Elife 11, e79433.
79. Kobbersmed J.R.L., Berns M.M.M., Ditlevsen S., Sørensen J.B., Walter A.M. Allosteric stabilization of calcium and lipid binding engages three synaptotagmins in fast exocytosis. Elife https://elifesciences.org/articles/74810
2021
78. Tawfik B., Martins J.S., Houy S., Imig C., Pinheiro P.S., Wojcik S.M., Brose N., Cooper B.H., Sørensen J.B. (2021). Synaptotagmin-7 places dense-core vesicles at the cell membrane to promote Munc13-2- and Ca2+-dependent priming. Elife 10:e64527.
77. Houy S., Martins J.S., Mohrmann R., Sørensen J.B. (2021). Measurements of exocytosis by capacitance recordings and calcium uncaging in mouse adrenal chromaffin cells. Meth. Mol. Biol. 2233:233-251.
2020
76. Wierda K.D.B., Toft-Bertelsen T.L., Gøtzsche C.R., Pedersen E., Korshunova I., Nielsen J., Bang M.L., Kønig A.B., Owczarek S., Gjørlund M.D., Schupp M., Bock E. Sørensen J.B. (2020). The soluble neurexin-1β ectodomain causes calcium influx and augments dendritic outgrowth and synaptic transmission. Sci. Rep. 10(1):18041.
75. Verhage M., Sørensen J.B. (2020). SNAREopathies: Diversity in Mechanisms and Symptoms. Neuron. 107(1):22-37.
74. Gowrisankaran S., Houy S., Peña del Castillo J.G., Steubler V., Gelker M., Kroll J., Pinheiro P.S., Schwitters, D., Halbsgut N., Pechstein A., van Weering J., Maritzen, T., Haucke V., Raimundo N., Sørensen J.B.*, Milosevic I.* (2020). Endophilin-A coordinates priming and fusion of neurosecretory vesicles via intersectin.*: Corresponding authors. Nature Commun. 11:1266. doi: 10.1038/s41467-020-14993-8.
73. Kobbersmed J.R.L., Grasskamp A.T., Meida J., Böhme M.A., Ditlevsen S., Sørensen J.B.*, Walter AM*. (2020). Rapid regulation of vesicle priming explains synaptic facilitation despite heterogeneous vesicle:Ca2+ channel distances * Corresponding authors. Elife: 9:e51032.
72. Ruiter M., Houy S., Engholm-Keller K., Graham M.E., and Sørensen J.B. (2020). SNAP-25 phosphorylation at Ser187 is not involved in Ca2+- or phorbolester-dependent potentiation of synaptic release. Mol. Cell. Neurosci. 102:103452. doi: 10.1016/j.mcn.2019.103452.
2019
71. Pons-Vizcarra M., Kurps J., Tawfik B., Sørensen J.B., van Weering J.R.T, and Verhage M. (2019). Munc18-1 regulates sub-membrane F-actin accumulation, independently of syntaxin1 targeting, via hydrophobicity in b-sheet 10. J. Cell Sci. Dec 2;132(23). pii: jcs234674.
70. Ruiter M., Kádková A, Scheutzow A, Malsam J. Söllner TH and Sørensen J.B. (2019). An electrostatic energy barrier for SNARE-dependent spontaneous and evoked synaptic transmission. Cell Reports 26: 2340-2352.
69. Hussain S., Ringsevjen H., Schupp M., Hvalby Ø., Sørensen J.B., Jensen V., Davanger S. (2018). A possible postsynaptic role for SNAP-25 in hippocampal synapses. Brain Struct. Funct . 224: 521-532.
2018
68. Kádková A., Radecke J., and Sørensen J.B. (2018). The SNAP-25 protein family. Neuroscience . Sep 27. pii: S0306-4522(18)30618-3. (Invited review)
2017
67. Houy S., Groffen A.J., Ziomkiewicz I., Verhage M., Pinheiro P.S., and Sørensen J.B. (2017). Doc2B acts as a calcium sensor for vesicle priming requiring synaptotagmin-1, Munc13-2 and SNAREs. Elife 6. pii: e27000.
66. Walter A.M.*,Müller R., Tawfik B., Wierda K.D.B., Pinheiro P.S., Nadler A., McCarthy A.W., Ziomkiewicz I., Kruse M., Reither G., Rettig J., Lehmann M., Haucke V., Hille B., Schultz C.* and Sørensen J.B.* (2017) Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis. (*: corresponding authors). Elife 6: e30203.
65. Hussain S., Egbenya D.L., Lai Y.-C., Dosa Z.J., Sørensen J.B., Anderson A.E., and Davanger S. (2017). The calcium sensor synaptotagmin 1 is expressed and regulated in hippocampal postsynaptic spines. Hippocampus July 7. doi: 10.1002/hipo.22761.
64. Berg R.W., Stauning M.T., Sørensen J.B. and Jahnsen H. (2017). Comment on ’Penetration of Action Potentials During Collision in the Median and Lateral Giant Axons of Invertebrates’. Phys. Rev. X. 7, 028001.
63. Sørensen J.B. (2017). Ride the wave: retrograde trafficking becomes Ca2+-dependent with BAIAP3. J. Cell Biol. Jun 16. pii: jcb.201706007 (”spotlight” commentary).
2016
62. Schupp M., Malsam, J., Ruiter M., Scheutzow A., Wierda K.D.B., Söllner T.H., and Sørensen J.B. (2016). Interactions between SNAP-25 and synaptotagmin-1 are involved in vesicle priming, clamping spontaneous and eliciting evoked neurotransmission. J. Neurosci . 36:11865-11880.
61. Pinheiro P.S., Houy S., and Sørensen J.B. (2016). C2-domain containing calcium sensors for neuroendocrine secretion. J. Neurochem. 139:943-958.
60. Toft-Bertelsen T.L., Ziomkiewicz I., Houy S., Pinheiro P.S., and Sørensen J.B. (2016). Regulation of Ca2+-channels by SNAP-25 via recruitment of syntaxin-1 from plasma membrane clusters. Mol. Biol. Cell . 27:3329-3341.
59. Munch A.S., Kedar G.H., van Weering J.R.T., Vazquez-Sanchez S., Enqi H., André T., Braun T., Söllner T.H., Verhage M., and Sørensen J.B. (2016). Extension of helix 12 in Munc18-1 induces vesicle priming. J. Neurosci . 36:6881-6891.
58. de Jong A.P., Meijer M., Saarloos, I., Cornelisse L.N., Toonen R.F. Sørensen J.B. and Verhage M. (2016). Phosphorylation of synaptotagmin-1 controls a post-priming step in PKC-dependent presynaptic plasticity. Proc. Natl. Acad. Sci. (USA) 113:5095-5100.
2015
57. Man K.M., Imig C., Pinheiro P.S., Stevens D.R., Rettig J., Sørensen J.B., Cooper B.H., Brose N., and Wojcik SM. (2015). Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis. Elife 4:e10635.
56. Kedar G., Munch A.S., van Weering J., Malsam J., Scheutzow A., de Wit H., Houy S., Tawfik B., Söllner T.H., Sørensen J.B., and Verhage M. (2015). A post-docking role of Synaptotagmin1-C2B domain bottom residues R398/399 in mouse chromaffin cells. J. Neurosci . 35: 14172-14182.
55. Schotten S., Meijer M., Walter A.M., Huson V., Mamer L., Kalogreades L., ter Veer M., Ruiter M., Brose N., Rosenmund C., Sørensen J.B.*, Verhage M.*, and Cornelisse L.N.* (2015). Additive effects on the energy barrier for synaptic vesicle fusion cause supralinear effects on the vesicle fusion rate. *Equal contributions. Elife 4:e05531.
54. Milosevic I., and Sorensen J.. (2015). Fusion machinery: SNARE protein complex. In: Presynaptic terminals , edited by Sumiko Mochida, Springer, Germany.
53. Antoku Y., Dedecker P., Pinheiro P.S., Vosch T., and Sørensen J.B. (2015). Spatial distribution and temporal evolution of DRONPA-fused SNAP25 clusters in adrenal chromaffin cells. Photochemical & Photobiological Sciences 14:1005-1012.
2014
52. Weber J.P., Toft-Bertelsen T.L., Mohrmann R., Delgado-Martinez I, and Sørensen J.B. (2014). Synaptotagmin-7 is an asynchronous calcium sensor for synaptic transmission in neurons expressing SNAP-23. PLoS One 9: e114033.
51. Pinheiro P.S., Jansen A.M., de Wit H., Tawfik B., Madsen K.L., Verhage M., Gether U., and Sørensen J.B. (2014). The BAR domain protein PICK1 controls vesicle number and size in adrenal chromaffin cells. J. Neurosci. 34,10688-10700.
50. Walter A.M., Kurps J., de Wit H., Schöning S., Toft-Bertelsen T.L., Lauks J., Ziomkiewicz I., Ngatchou Weiss A., Schulz A., Fischer von Mollard G., Verhage M., and Sørensen J.B. (2014). The SNARE protein vti1a functions in dense-core vesicle biogenesis. EMBO J 33,1681-1697.
49. Wierda K.D.B., and Sørensen J.B. (2014). Innervation by a GABAergic neuron depresses spontaneous release in glutamatergic neurons and unveils the clamping phenotype of synaptotagmin-1. J. Neurosci. 34, 2100-2110.
2013
48. Walter A.M., Pinheiro P.S., Verhage M., and Sørensen J.B. (2013). A sequential vesicle pool model with a single release sensor effectively explains complex Ca2+-dependent properties of neurosecretion. PLoS Computational Biology 9, e1003362.
47. Pinheiro P.S., De Wit H., Walter A.M., Groffen A.J., Verhage M., and Sørensen J.B. (2013). Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release. J. Neurosci. 33, 16459-16470
46. Mohrmann R., De Wit H., Connell E., Pinheiro P.S., Leese C., Bruns D., Davletov B., Verhage M., and Sørensen J.B. (2013). Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering. J. Neurosci. 33, 14417-14430.
2012
45. Mohrmann R., and Sørensen J.B. (2012). SNARE requirements en route to exocytosis: from many to few. J. Mol. Neurosci. 48:387-394.
2011
44. Walter A.M., Groffen A.J., Sørensen J.B., and Verhage M. (2011): Multiple Ca(2+) sensors in secretion: teammates, competitors or autocrats? Trends Neurosci. 34:487-497.
2010
43. Ngatchou A.N., Kisler K., Fang Q., Walter A.M., Zhao Y., Sørensen J.B., and Lindau M. (2010). Role of the synaptobrevin C-terminus in fusion pore formation. Proc. Natl. Acad. Sci. (USA) 107, 18463-18468.
42. Mohrmann R., De Wit H., Verhage M., Neher E., and Sørensen J.B. (2010). Fast vesicle fusion in living cells requires at least three SNARE-complexes. Science 330, 502-505.
41. Schonn J.S., van Weering J.R.T., Mohrmann R., Schlüter O.M., Südhof T.C., de Wit H., Verhage M., and Sørensen J.B. (2010). Rab3 proteins involved in vesicle biogenesis and priming in embryonic mouse chromaffin cells. Traffic 11, 1415-1428.
40. Weber J.P., Reim K., and Sørensen J.B. (2010). Opposing roles of two sub-domains of the SNARE-complex in neurotransmission. EMBO J. 29, 2477-2490.
39. Wiederhold K., Kloepper T.H., Walter A.M., Stein A., Kienle N., Sørensen J.B., and Fasshauer D. (2010). A coiled-coil trigger site is essential for rapid binding of synaptobrevin to the SNARE acceptor complex. J. Biol. Chem. 285, 21549-21559.
38. Walter A.M., Wiederhold K., Bruns D., Fasshauer D., and Sørensen J.B. (2010). Synaptobrevin N-terminally bound to SNAP-25:syntaxin defines the primed vesicle state in regulated exocytosis. J. Cell Biol. 188, 401-413.
2009
37. Sørensen J.B. (2009). Conflicting views on the membrane fusion machinery and the fusion pore. Annu. Rev. Cell Dev. Biol . 25, 513-537.
36. De Wit H., Walter A.M., Milosevic I., Gulyás-Kovács A., Sørensen J.B.*, and Verhage M.* (2009). Synaptotagmin docks secretory vesicles to SNAP-25:syntaxin dimers. Cell 138, 935-946. (*Shared last-authorship).
35. Sørensen J.B. (2009). Vesicle pools. Chapter 1384 in: New Encyclopedia for Neuroscience , edited by Larry Squire et al., Elsevier, Oxford, UK.
2008
34. Cai H., Reim K., Varoqueaux F., Tapechum S., Hill K., Sørensen J.B., Brose N., and Chow R.H. (2008). Complexin II plays a positive role in Ca2+-triggered exocytosis by facilitating vesicle priming. Proc. Natl. Acad. Sci. (USA) 105, 19538-19543.
33. Fang Q., Berberian K., Gong L.W., Hafez I., Sørensen J.B., and Lindau M. (2008). The role of the C terminus of the SNARE protein SNAP-25 in fusion pore opening and a model for fusion pore mechanics. Proc. Natl. Acad. Sci. (USA) 105, 15388-15392.
32. Nagy G., Milosevic I., Mohrman, R., Wiederhold K., Walter A.M., and Sørensen J.B. (2008). The SNAP-25 linker as an adaptation towards fast exocytosis. Mol. Biol. Cell 19, 3769-3781.
31. Sørensen J.B., and Verhage, M. (2008). Vesicle docking in regulated exocytosis. Traffic 9, 1414-1424.
30. Schonn J.S., Maximov A., Lao Y., Südhof T.C., and Sørensen J.B. (2008). Synaptotagmin-7 and -1 are functionally overlapping calcium sensors for exocytosis in adrenal chromaffin cells. Proc. Natl. Acad. Sci. (USA) 105, 3998-4003.
29. Maximov A., Lao Y., Li H., Chen X., Rizo J., Sørensen J.B., and Südhof T.C. (2008). Genetic analysis of synaptotagmin-7 function in synaptic vesicle exocytosis. Proc. Natl. Acad. Sci. (USA) 105, 3986-3991.
2007
28. Jockusch W.J., Speidel D., Sigler A., Sørensen J.B., Varoqueaux F., Rhee J.-S., and Brose N. (2007). CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins. Cell 131, 796-808.
27. Delgado-Martinez I., Nehring R., and Sørensen J.B. (2007). Differential abilities of SNAP-25 homologues to support neuronal function. J. Neurosci . 27, 9380-9391.
26. Gulyás-Kovács A., de Wit H., Kochubey O., Milosevic I., Toonen R., Klingauf J., Verhage M., and Sørensen J.B. (2007). Munc18-1: sequential interactions with the fusion machinery stimulate vesicle docking and priming. J. Neurosci. 27, 8676-8686.
2006
25. Zilly F., Sørensen J.B., Jahn R., and Lang T. (2006). Munc-18-1 binding to syntaxin 1 allows for the initiation of the neuronal SNARE-zipper in native membranes. PLoS Biology 4(10), e330 doi:10.1371/journal.pbio.0040330.
24. Nili U., de Wit H., Gulyás-Kovács A., Toonen R.F., Sørensen J.B., Verhage M., and Ashery U. (2006). Munc18-1 phosphorylation by PKC potentiates vesicle pool replenishment in bovine chromaffin cells. Neuroscience 143, 487-500.
23. Toonen R.F., Kochubey O., de Wit H., Gulyas-Kovacs A., Konijnenburg B., Sørensen J.B., Klingauf J., and Verhage M. (2006). Dissecting docking and tethering of secretory vesicles at the target membrane. EMBO J . 25, 3725-3737.
22. Sørensen J.B., Wiederhold K., Müller E.M., Milosevic I., Nagy G., de Groot B.L., Grubmüller H., and Fasshauer D. (2006). Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J. 25, 955-966.
21. Nagy G., Kim J.H., Pang Z.P., Matti U., Rettig J., Sudhof T.C., and Sørensen J.B. (2006). Different effects on fast exocytosis induced by synaptotagmin 1 and 2 isoforms and abundance but not by phosphorylation. J Neurosci. 26, 632-643.
2005
20. Nagy G., Milosevic I., Fasshauer D., Muller E.M., de Groot B.L., Lang T., Wilson M.C., and Sørensen J.B. (2005). Alternative Splicing of SNAP-25 Regulates Secretion through Nonconservative Substitutions in the SNARE Domain. Mol. Biol. Cell 16, 5675-5685
19. Milosevic I., Sørensen J.B.*, Lang T., Krauss M., Nagy G., Haucke V., Jahn R., and Neher E. (2005). Plasmalemmal PI(4,5)P2 level regulates the releasable vesicle pool size in chromaffin cells. J. Neurosci. 25, 2557-2565. (*Corresponding author)
18. Sørensen J.B. (2005). SNARE complexes prepare for membrane fusion. Trends Neurosci. 28, 453-455.
2004
17. Nagy G., Reim K., Matti U., Brose N., Binz T., Rettig J., Neher E., and Sørensen,J.B. (2004). Regulation of releasable vesicle pool sizes by protein kinase A-dependent phosphorylation of SNAP-25. Neuron 41, 351-365.
16. Sørensen J.B. (2004). Formation, stabilisation and fusion of the readily-releasable pool of secretory vesicles. Pflügers Arch. - Eur. J. Physiol. 448, 347-362.
2003
15. Sørensen J.B., Fernandez-Chacon R., Südhof T.C., and Neher E. (2003). Examining synaptotagmin I function in dense core vesicle exocytosis under direct control of Ca2+. J. Gen. Physiol . 122, 265-276.
14. Sørensen J.B.*, Nagy G.*, Varoqueaux F., Nehring R.B., Brose N., Wilson M.C., and Neher E. (2003). Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 114, 75-86. (*Shared first authorship)
13. Brede M., Nagy G., Phillip M., Sørensen J.B., Lohse M.J., and Hein L. (2003). Differential control of adrenal and sympathetic catecholamine release by a2-receptor subtypes. Mol. Endocrinol. 17, 1640-1646.
2002
12. Nagy G., Matti U., Nehring R.B., Binz T., Rettig J., Neher E., and Sørensen J.B. (2002) Protein kinase C-dependent phosphorylation of synaptosome-associated protein of 25 kDa at Ser187 potentiates vesicle recruitment. J. Neurosci. 22, 9278-9286.
11. Sørensen J.B., Matti U., Wei S., Nehring R.B., Voets T., Ashery U., Binz T., Neher E., and Rettig J. (2002). The SNARE protein SNAP-25 is linked to fast calcium-triggering of exocytosis. Proc Natl Acad Sci U S A. 99, 1627-1632.
10. Larsen E.H., Sørensen J.B., and Sørensen, J.N. (2002). Analysis of the sodium recirculation theory of solute coupled water transport in small intestine. J. Physiol . 542, 33-50.
2001
9. Sørensen J.B.*, Nielsen M.S.*, Gudme C.N., Larsen E.H., and Nielsen R. (2001). Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: Possible involvement in macroscopic secretion. Pflügers Arch. - Eur. J. Physiol . 442, 1-11. (*Shared first-authorship)
2000
8. Larsen E.H., Sørensen J.B., and Sørensen J.N. (2000). A mathematical model of solute coupled water transport in leaky epithelia incorporating recirculation of the actively transported solute. J. Gen. Physiol. 116, 101-124.
7. Sørensen J.B., Cha A., Latorre R., Rosenmann E., and Bezanilla F. (2000). Deletion of the S3-S4 linker in the Shaker potassium channel reveals two quenching groups outside S4. J. Gen. Physiol. 115, 209-221.
1999
6. Sørensen J.B., and Larsen E.H. (1999). Membrane potential and conductance of frog skin gland acinar cells in resting conditions and during stimulation with agonists of macroscopic secretion. Pflügers Arch. - Eur. J. Physiol. 439, 101-112.
1998
5. Sørensen J.B., and Larsen E.H. (1998). Patch-clamp on the luminal membrane of exocrine gland acini from frog skin (Rana esculenta) reveals the presence of cystic fibrosis transmembrane conductance regulator-like Cl- channel activated by cAMP. J. Gen. Physiol. 112, 19-31.
1996
4. Sørensen J.B., and Larsen E.H. (1996). Heterogeneity of chloride channels in the apical membrane of isolated mitochondria-rich cells from toad skin. J. Gen. Physiol. 108, 421-433.
3. Larsen E.H., Christoffersen B.C., Jensen L.J., Sørensen J.B. & Willumsen N.J. (1996). Role of mitochondria-rich cells for epithelial chloride uptake. Exp Physiol. 81, 525-534.
2. Larsen E.H., Jensen L.J., Jespersen Å., Møbjerg N., Sørensen J.B., and Willumsen N.J. (1996). Chloride channels of mitochondria-rich cells in anuran skin: Physiological significance and regulation. Zoology 99, 227-236.
1994
1. Bildsøe M., and Sørensen J.B. (1994). A method of modelling time dependent data: swimming in guppies (Poecilia reticulata) under threat of a predator. Behavioural Processes 31, 75-96.
Lab members
Name | Title | Job responsibilities | Image |
---|---|---|---|
Search in Name | Search in Title | Search in Job responsibilities | |
Anna Kádková | Guest Researcher | Sørensen Lab |
|
Dorte Lauritsen | Laboratory Technician | Sørensen lab |
|
Feng Xu | PhD Student | Sørensen Lab |
|
Jakob Balslev Sørensen | Professor | Sørensen lab |
|
Maiken Østergaard Pedersen | PhD Student | Sørensen Lab |
|
Marie Amanda Bust Levy | Guest Researcher | Sørensen Lab |
|
Mário Jorge da Silva Carvalho | Postdoc | Sørensen Lab |
|
Nathalie Vikkelsø Elleholm | Master-Student | Sørensen Lab |
|
Paola Barbagallo | Postdoc | Sørensen Lab |
|
Zhen Li | Master-Student | Sørensen Lab |
|