Ultrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Ultrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices. / Imig, Cordelia; López-Murcia, Francisco José; Maus, Lydia; García-Plaza, Inés Hojas; Mortensen, Lena Sünke; Schwark, Manuela; Schwarze, Valentin; Angibaud, Julie; Nägerl, U Valentin; Taschenberger, Holger; Brose, Nils; Cooper, Benjamin H.

In: Neuron, Vol. 108, No. 5, 2020, p. 843-860.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Imig, C, López-Murcia, FJ, Maus, L, García-Plaza, IH, Mortensen, LS, Schwark, M, Schwarze, V, Angibaud, J, Nägerl, UV, Taschenberger, H, Brose, N & Cooper, BH 2020, 'Ultrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices', Neuron, vol. 108, no. 5, pp. 843-860. https://doi.org/10.1016/j.neuron.2020.09.004

APA

Imig, C., López-Murcia, F. J., Maus, L., García-Plaza, I. H., Mortensen, L. S., Schwark, M., Schwarze, V., Angibaud, J., Nägerl, U. V., Taschenberger, H., Brose, N., & Cooper, B. H. (2020). Ultrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices. Neuron, 108(5), 843-860. https://doi.org/10.1016/j.neuron.2020.09.004

Vancouver

Imig C, López-Murcia FJ, Maus L, García-Plaza IH, Mortensen LS, Schwark M et al. Ultrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices. Neuron. 2020;108(5):843-860. https://doi.org/10.1016/j.neuron.2020.09.004

Author

Imig, Cordelia ; López-Murcia, Francisco José ; Maus, Lydia ; García-Plaza, Inés Hojas ; Mortensen, Lena Sünke ; Schwark, Manuela ; Schwarze, Valentin ; Angibaud, Julie ; Nägerl, U Valentin ; Taschenberger, Holger ; Brose, Nils ; Cooper, Benjamin H. / Ultrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices. In: Neuron. 2020 ; Vol. 108, No. 5. pp. 843-860.

Bibtex

@article{667dcebc6ff542a1a777f03930b7916b,
title = "Ultrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices",
abstract = "Electron microscopy can resolve synapse ultrastructure with nanometer precision, but the capture of time-resolved, activity-dependent synaptic membrane-trafficking events has remained challenging, particularly in functionally distinct synapses in a tissue context. We present a method that combines optogenetic stimulation-coupled cryofixation ({"}flash-and-freeze{"}) and electron microscopy to visualize membrane trafficking events and synapse-state-specific changes in presynaptic vesicle organization with high spatiotemporal resolution in synapses of cultured mouse brain tissue. With our experimental workflow, electrophysiological and {"}flash-and-freeze{"} electron microscopy experiments can be performed under identical conditions in artificial cerebrospinal fluid alone, without the addition of external cryoprotectants, which are otherwise needed to allow adequate tissue preservation upon freezing. Using this approach, we reveal depletion of docked vesicles and resolve compensatory membrane recycling events at individual presynaptic active zones at hippocampal mossy fiber synapses upon sustained stimulation.",
author = "Cordelia Imig and L{\'o}pez-Murcia, {Francisco Jos{\'e}} and Lydia Maus and Garc{\'i}a-Plaza, {In{\'e}s Hojas} and Mortensen, {Lena S{\"u}nke} and Manuela Schwark and Valentin Schwarze and Julie Angibaud and N{\"a}gerl, {U Valentin} and Holger Taschenberger and Nils Brose and Cooper, {Benjamin H}",
note = "Copyright {\textcopyright} 2020 The Authors. Published by Elsevier Inc. All rights reserved.",
year = "2020",
doi = "10.1016/j.neuron.2020.09.004",
language = "English",
volume = "108",
pages = "843--860",
journal = "Neuron",
issn = "0896-6273",
publisher = "Cell Press",
number = "5",

}

RIS

TY - JOUR

T1 - Ultrastructural Imaging of Activity-Dependent Synaptic Membrane-Trafficking Events in Cultured Brain Slices

AU - Imig, Cordelia

AU - López-Murcia, Francisco José

AU - Maus, Lydia

AU - García-Plaza, Inés Hojas

AU - Mortensen, Lena Sünke

AU - Schwark, Manuela

AU - Schwarze, Valentin

AU - Angibaud, Julie

AU - Nägerl, U Valentin

AU - Taschenberger, Holger

AU - Brose, Nils

AU - Cooper, Benjamin H

N1 - Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.

PY - 2020

Y1 - 2020

N2 - Electron microscopy can resolve synapse ultrastructure with nanometer precision, but the capture of time-resolved, activity-dependent synaptic membrane-trafficking events has remained challenging, particularly in functionally distinct synapses in a tissue context. We present a method that combines optogenetic stimulation-coupled cryofixation ("flash-and-freeze") and electron microscopy to visualize membrane trafficking events and synapse-state-specific changes in presynaptic vesicle organization with high spatiotemporal resolution in synapses of cultured mouse brain tissue. With our experimental workflow, electrophysiological and "flash-and-freeze" electron microscopy experiments can be performed under identical conditions in artificial cerebrospinal fluid alone, without the addition of external cryoprotectants, which are otherwise needed to allow adequate tissue preservation upon freezing. Using this approach, we reveal depletion of docked vesicles and resolve compensatory membrane recycling events at individual presynaptic active zones at hippocampal mossy fiber synapses upon sustained stimulation.

AB - Electron microscopy can resolve synapse ultrastructure with nanometer precision, but the capture of time-resolved, activity-dependent synaptic membrane-trafficking events has remained challenging, particularly in functionally distinct synapses in a tissue context. We present a method that combines optogenetic stimulation-coupled cryofixation ("flash-and-freeze") and electron microscopy to visualize membrane trafficking events and synapse-state-specific changes in presynaptic vesicle organization with high spatiotemporal resolution in synapses of cultured mouse brain tissue. With our experimental workflow, electrophysiological and "flash-and-freeze" electron microscopy experiments can be performed under identical conditions in artificial cerebrospinal fluid alone, without the addition of external cryoprotectants, which are otherwise needed to allow adequate tissue preservation upon freezing. Using this approach, we reveal depletion of docked vesicles and resolve compensatory membrane recycling events at individual presynaptic active zones at hippocampal mossy fiber synapses upon sustained stimulation.

U2 - 10.1016/j.neuron.2020.09.004

DO - 10.1016/j.neuron.2020.09.004

M3 - Journal article

C2 - 32991831

VL - 108

SP - 843

EP - 860

JO - Neuron

JF - Neuron

SN - 0896-6273

IS - 5

ER -

ID: 249431082