Transcriptional profiling of transport mechanisms and regulatory pathways in rat choroid plexus

Research output: Contribution to journalJournal articleResearchpeer-review

Documents

  • Fulltext

    Final published version, 3.53 MB, PDF document

BACKGROUND: Dysregulation of brain fluid homeostasis associates with brain pathologies in which fluid accumulation leads to elevated intracranial pressure. Surgical intervention remains standard care, since specific and efficient pharmacological treatment options are limited for pathologies with disturbed brain fluid homeostasis. Such lack of therapeutic targets originates, in part, from the incomplete map of the molecular mechanisms underlying cerebrospinal fluid (CSF) secretion by the choroid plexus.

METHODS: The transcriptomic profile of rat choroid plexus was generated by RNA Sequencing (RNAseq) of whole tissue and epithelial cells captured by fluorescence-activated cell sorting (FACS), and compared to proximal tubules. The bioinformatic analysis comprised mapping to reference genome followed by filtering for type, location, and association with alias and protein function. The transporters and associated regulatory modules were arranged in discovery tables according to their transcriptional abundance and tied together in association network analysis.

RESULTS: The transcriptomic profile of choroid plexus displays high similarity between sex and species (human, rat, and mouse) and lesser similarity to another high-capacity fluid-transporting epithelium, the proximal tubules. The discovery tables provide lists of transport mechanisms that could participate in CSF secretion and suggest regulatory candidates.

CONCLUSIONS: With quantification of the transport protein transcript abundance in choroid plexus and their potentially linked regulatory modules, we envision a molecular tool to devise rational hypotheses regarding future delineation of choroidal transport proteins involved in CSF secretion and their regulation. Our vision is to obtain future pharmaceutical targets towards modulation of CSF production in pathologies involving disturbed brain water dynamics.

Original languageEnglish
Article number44
JournalFluids and Barriers of the CNS
Volume19
Issue number1
Number of pages19
ISSN2045-8118
DOIs
Publication statusPublished - 2022

Bibliographical note

Publisher Copyright:
© 2022, The Author(s).

    Research areas

  • Animals, Biological Transport/physiology, Brain/metabolism, Cerebrospinal Fluid/metabolism, Choroid Plexus/metabolism, Epithelial Cells/metabolism, Epithelium/metabolism, Mice, Rats

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 310488909