The competition between endogenous dopamine and radioligands for specific binding to dopamine receptors

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

The competition between endogenous dopamine and radioligands for specific binding to dopamine receptors. / Cumming, Paul; Wong, Dean F; Dannals, Robert F; Gillings, Nic; Hilton, John; Scheffel, Ursula; Gjedde, Albert.

In: Annals of the New York Academy of Sciences, Vol. 965, 2002, p. 440-50.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Cumming, P, Wong, DF, Dannals, RF, Gillings, N, Hilton, J, Scheffel, U & Gjedde, A 2002, 'The competition between endogenous dopamine and radioligands for specific binding to dopamine receptors', Annals of the New York Academy of Sciences, vol. 965, pp. 440-50.

APA

Cumming, P., Wong, D. F., Dannals, R. F., Gillings, N., Hilton, J., Scheffel, U., & Gjedde, A. (2002). The competition between endogenous dopamine and radioligands for specific binding to dopamine receptors. Annals of the New York Academy of Sciences, 965, 440-50.

Vancouver

Cumming P, Wong DF, Dannals RF, Gillings N, Hilton J, Scheffel U et al. The competition between endogenous dopamine and radioligands for specific binding to dopamine receptors. Annals of the New York Academy of Sciences. 2002;965:440-50.

Author

Cumming, Paul ; Wong, Dean F ; Dannals, Robert F ; Gillings, Nic ; Hilton, John ; Scheffel, Ursula ; Gjedde, Albert. / The competition between endogenous dopamine and radioligands for specific binding to dopamine receptors. In: Annals of the New York Academy of Sciences. 2002 ; Vol. 965. pp. 440-50.

Bibtex

@article{45e6eae0b31511debc73000ea68e967b,
title = "The competition between endogenous dopamine and radioligands for specific binding to dopamine receptors",
abstract = "The ternary complex model of G-protein-linkage to receptors holds that agonists increase the affinity of the receptors for the G protein. Consequently, an agonist can exert the greatest inhibition of the binding of radioligands which are also agonists. We hypothesized that competition from endogenous dopamine in striatum of living mice should thus have a greater effect on the binding of the D(2,3) agonist N-[(3)H]propylnorapomorphine ([(3)H]NPA), than on the binding of the D(2,3) antagonist [(11)C]raclopride in living brain. The binding potential (p(B(0))), defined as the ratio of bound-to-unbound ligand after reserpine treatment, was measured in mouse striatum for [(11)C]raclopride (p(B(0))(RAC)(C)) = 8.5, and for [(3)H]NPA(p(B(0))(NPA)) = 5.3. Relative to these baseline values after dopamine depletion, saline-treatment decreased the p(B) of [(3)H]NPA by one-half, while the p(B) of [(11)C]raclopride declined by only one-third. Amphetamine decreased the p(B) of [(3)H]NPA to a greater extent than that of [(11)C]raclopride. The apparent inhibition constant of endogenous dopamine depended on the dopamine occupancy and declined to a value 1.66 times greater for [(3)H]NPA than for [(11)C]raclopride at its highest occupancies. Thus, the agonist binding was more sensitive than antagonist binding to competition from endogenous dopamine. Dopamine agonist ligands may be especially useful for PET studies of dopamine receptor occupancy by endogenous synaptic dopamine. Analysis of the effect of dopamine occupancy on the inhibition of agonist indicated a limited supply of G protein, with a maximum ternary complex fraction of 40% of maximum antagonist binding capacity.",
author = "Paul Cumming and Wong, {Dean F} and Dannals, {Robert F} and Nic Gillings and John Hilton and Ursula Scheffel and Albert Gjedde",
year = "2002",
language = "English",
volume = "965",
pages = "440--50",
journal = "Annals of The Lyceum of Natural History of New York",
issn = "0077-8923",
publisher = "Wiley-Blackwell",

}

RIS

TY - JOUR

T1 - The competition between endogenous dopamine and radioligands for specific binding to dopamine receptors

AU - Cumming, Paul

AU - Wong, Dean F

AU - Dannals, Robert F

AU - Gillings, Nic

AU - Hilton, John

AU - Scheffel, Ursula

AU - Gjedde, Albert

PY - 2002

Y1 - 2002

N2 - The ternary complex model of G-protein-linkage to receptors holds that agonists increase the affinity of the receptors for the G protein. Consequently, an agonist can exert the greatest inhibition of the binding of radioligands which are also agonists. We hypothesized that competition from endogenous dopamine in striatum of living mice should thus have a greater effect on the binding of the D(2,3) agonist N-[(3)H]propylnorapomorphine ([(3)H]NPA), than on the binding of the D(2,3) antagonist [(11)C]raclopride in living brain. The binding potential (p(B(0))), defined as the ratio of bound-to-unbound ligand after reserpine treatment, was measured in mouse striatum for [(11)C]raclopride (p(B(0))(RAC)(C)) = 8.5, and for [(3)H]NPA(p(B(0))(NPA)) = 5.3. Relative to these baseline values after dopamine depletion, saline-treatment decreased the p(B) of [(3)H]NPA by one-half, while the p(B) of [(11)C]raclopride declined by only one-third. Amphetamine decreased the p(B) of [(3)H]NPA to a greater extent than that of [(11)C]raclopride. The apparent inhibition constant of endogenous dopamine depended on the dopamine occupancy and declined to a value 1.66 times greater for [(3)H]NPA than for [(11)C]raclopride at its highest occupancies. Thus, the agonist binding was more sensitive than antagonist binding to competition from endogenous dopamine. Dopamine agonist ligands may be especially useful for PET studies of dopamine receptor occupancy by endogenous synaptic dopamine. Analysis of the effect of dopamine occupancy on the inhibition of agonist indicated a limited supply of G protein, with a maximum ternary complex fraction of 40% of maximum antagonist binding capacity.

AB - The ternary complex model of G-protein-linkage to receptors holds that agonists increase the affinity of the receptors for the G protein. Consequently, an agonist can exert the greatest inhibition of the binding of radioligands which are also agonists. We hypothesized that competition from endogenous dopamine in striatum of living mice should thus have a greater effect on the binding of the D(2,3) agonist N-[(3)H]propylnorapomorphine ([(3)H]NPA), than on the binding of the D(2,3) antagonist [(11)C]raclopride in living brain. The binding potential (p(B(0))), defined as the ratio of bound-to-unbound ligand after reserpine treatment, was measured in mouse striatum for [(11)C]raclopride (p(B(0))(RAC)(C)) = 8.5, and for [(3)H]NPA(p(B(0))(NPA)) = 5.3. Relative to these baseline values after dopamine depletion, saline-treatment decreased the p(B) of [(3)H]NPA by one-half, while the p(B) of [(11)C]raclopride declined by only one-third. Amphetamine decreased the p(B) of [(3)H]NPA to a greater extent than that of [(11)C]raclopride. The apparent inhibition constant of endogenous dopamine depended on the dopamine occupancy and declined to a value 1.66 times greater for [(3)H]NPA than for [(11)C]raclopride at its highest occupancies. Thus, the agonist binding was more sensitive than antagonist binding to competition from endogenous dopamine. Dopamine agonist ligands may be especially useful for PET studies of dopamine receptor occupancy by endogenous synaptic dopamine. Analysis of the effect of dopamine occupancy on the inhibition of agonist indicated a limited supply of G protein, with a maximum ternary complex fraction of 40% of maximum antagonist binding capacity.

M3 - Journal article

C2 - 12105119

VL - 965

SP - 440

EP - 450

JO - Annals of The Lyceum of Natural History of New York

JF - Annals of The Lyceum of Natural History of New York

SN - 0077-8923

ER -

ID: 14947020