Pharmacokinetics of plasma 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]Fdopa) in humans.
Research output: Contribution to journal › Journal article › Research › peer-review
Standard
Pharmacokinetics of plasma 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]Fdopa) in humans. / Cumming, P; Léger, G C; Kuwabara, H; Gjedde, A.
In: Journal of Cerebral Blood Flow and Metabolism, Vol. 13, No. 4, 1993, p. 668-75.Research output: Contribution to journal › Journal article › Research › peer-review
Harvard
APA
Vancouver
Author
Bibtex
}
RIS
TY - JOUR
T1 - Pharmacokinetics of plasma 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]Fdopa) in humans.
AU - Cumming, P
AU - Léger, G C
AU - Kuwabara, H
AU - Gjedde, A
PY - 1993
Y1 - 1993
N2 - Like native DOPA, [18F]-6-fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA) is subject to methylation and decarboxylation. To determine the rates of formation and elimination of [18F]FDOPA metabolites, plasma from human subjects undergoing positron emission tomographic (PET) studies was analyzed by high-performance liquid chromatography (HPLC). In addition to the principal metabolite O-methyl-[18F]FDOPA (OMe[18F]FDOPA), two decarboxylated metabolites were detected in plasma from carbidopa pretreated subjects. The concentrations of each metabolite during 90 min following tracer injection could be described as a function of the concentration of [18F]FDOPA, and two rate constants; k0, the rate of formation, and k-1, the rate of clearance. Plasma metabolite time series generated from total plasma activity curves and measured rate constants were in close agreement with the actual concentrations determined by HPLC fractionation. Population means for k0 (0.011 +/- 0.002 min-1) and k-1 (0.010 +/- 0.003 min-1) were used to generate "simulated" plasma curves. The measured and generated plasma curves were used as inputs for estimation of partition and decarboxylation coefficients of [18F]FDOPA in brain. The use of generated input functions from normal population means of transfer coefficients did not introduce a systematic error into the estimate of the enzyme activity. However, the high variability of these estimates in patients precludes the use of this technique as an alterative to individual HPLC measurements.
AB - Like native DOPA, [18F]-6-fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA) is subject to methylation and decarboxylation. To determine the rates of formation and elimination of [18F]FDOPA metabolites, plasma from human subjects undergoing positron emission tomographic (PET) studies was analyzed by high-performance liquid chromatography (HPLC). In addition to the principal metabolite O-methyl-[18F]FDOPA (OMe[18F]FDOPA), two decarboxylated metabolites were detected in plasma from carbidopa pretreated subjects. The concentrations of each metabolite during 90 min following tracer injection could be described as a function of the concentration of [18F]FDOPA, and two rate constants; k0, the rate of formation, and k-1, the rate of clearance. Plasma metabolite time series generated from total plasma activity curves and measured rate constants were in close agreement with the actual concentrations determined by HPLC fractionation. Population means for k0 (0.011 +/- 0.002 min-1) and k-1 (0.010 +/- 0.003 min-1) were used to generate "simulated" plasma curves. The measured and generated plasma curves were used as inputs for estimation of partition and decarboxylation coefficients of [18F]FDOPA in brain. The use of generated input functions from normal population means of transfer coefficients did not introduce a systematic error into the estimate of the enzyme activity. However, the high variability of these estimates in patients precludes the use of this technique as an alterative to individual HPLC measurements.
M3 - Journal article
C2 - 8314919
VL - 13
SP - 668
EP - 675
JO - Journal of Cerebral Blood Flow and Metabolism
JF - Journal of Cerebral Blood Flow and Metabolism
SN - 0271-678X
IS - 4
ER -
ID: 14942583