MR-based statistical atlas of the Göttingen minipig brain.

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

MR-based statistical atlas of the Göttingen minipig brain. / Watanabe, Hideaki; Andersen, Flemming; Simonsen, C Z; Evans, S M; Gjedde, A; Cumming, P; DaNeX Study Group.

In: NeuroImage, Vol. 14, No. 5, 2001, p. 1089-96.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

Watanabe, H, Andersen, F, Simonsen, CZ, Evans, SM, Gjedde, A, Cumming, P & DaNeX Study Group 2001, 'MR-based statistical atlas of the Göttingen minipig brain.', NeuroImage, vol. 14, no. 5, pp. 1089-96. https://doi.org/10.1006/nimg.2001.0910

APA

Watanabe, H., Andersen, F., Simonsen, C. Z., Evans, S. M., Gjedde, A., Cumming, P., & DaNeX Study Group (2001). MR-based statistical atlas of the Göttingen minipig brain. NeuroImage, 14(5), 1089-96. https://doi.org/10.1006/nimg.2001.0910

Vancouver

Watanabe H, Andersen F, Simonsen CZ, Evans SM, Gjedde A, Cumming P et al. MR-based statistical atlas of the Göttingen minipig brain. NeuroImage. 2001;14(5):1089-96. https://doi.org/10.1006/nimg.2001.0910

Author

Watanabe, Hideaki ; Andersen, Flemming ; Simonsen, C Z ; Evans, S M ; Gjedde, A ; Cumming, P ; DaNeX Study Group. / MR-based statistical atlas of the Göttingen minipig brain. In: NeuroImage. 2001 ; Vol. 14, No. 5. pp. 1089-96.

Bibtex

@article{11d488c0b31511debc73000ea68e967b,
title = "MR-based statistical atlas of the G{\"o}ttingen minipig brain.",
abstract = "Thedomestic pig is increasingly being used as an experimental model for brain imaging studies with positron emission tomography (PET). The recording of radiotracer uptake by PET gives functional and physiological information, but with poor spatial resolution. To date, anatomical regions of interest in pig brain have been defined in MR images obtained for each individual animal, because of the lack of a standard stereotaxic coordinate system for the pig brain. In order to define a stereotaxic coordinate system, we coregistered T1-weighted MR images from 22 male G{\"o}ttingen minipigs and obtained a statistically defined surface rendering of the average minipig brain in which stereotaxic zero is defined by the position of the pineal gland. The average brain is now used as a target for registration of dynamic PET data, so that time-activity curves can be extracted from standard volumes of interest. In order to define these volumes, MR images from each individual pig were manually segmented into a total of 34 brain structures, including cortical regions, white matter, caudate and putamen, ventricular system, and cerebellum. The mean volumes of these structures had variances in the range of 10-20%. The 34 brain volumes were transformed into the common coordinate system and then used to generate surface renderings with probabilistic threshold greater than 50%. This probabilistic threshold gave nearly quantitative recovery of the mean volumes in native space. The probabilistic volumes in stereotaxic space are now being used to extract time-radioactivity curves from dynamic PET recordings.",
author = "Hideaki Watanabe and Flemming Andersen and Simonsen, {C Z} and Evans, {S M} and A Gjedde and P Cumming and {DaNeX Study Group}",
note = "Copyright 2001 Academic Press.",
year = "2001",
doi = "10.1006/nimg.2001.0910",
language = "English",
volume = "14",
pages = "1089--96",
journal = "NeuroImage",
issn = "1053-8119",
publisher = "Elsevier",
number = "5",

}

RIS

TY - JOUR

T1 - MR-based statistical atlas of the Göttingen minipig brain.

AU - Watanabe, Hideaki

AU - Andersen, Flemming

AU - Simonsen, C Z

AU - Evans, S M

AU - Gjedde, A

AU - Cumming, P

AU - DaNeX Study Group

N1 - Copyright 2001 Academic Press.

PY - 2001

Y1 - 2001

N2 - Thedomestic pig is increasingly being used as an experimental model for brain imaging studies with positron emission tomography (PET). The recording of radiotracer uptake by PET gives functional and physiological information, but with poor spatial resolution. To date, anatomical regions of interest in pig brain have been defined in MR images obtained for each individual animal, because of the lack of a standard stereotaxic coordinate system for the pig brain. In order to define a stereotaxic coordinate system, we coregistered T1-weighted MR images from 22 male Göttingen minipigs and obtained a statistically defined surface rendering of the average minipig brain in which stereotaxic zero is defined by the position of the pineal gland. The average brain is now used as a target for registration of dynamic PET data, so that time-activity curves can be extracted from standard volumes of interest. In order to define these volumes, MR images from each individual pig were manually segmented into a total of 34 brain structures, including cortical regions, white matter, caudate and putamen, ventricular system, and cerebellum. The mean volumes of these structures had variances in the range of 10-20%. The 34 brain volumes were transformed into the common coordinate system and then used to generate surface renderings with probabilistic threshold greater than 50%. This probabilistic threshold gave nearly quantitative recovery of the mean volumes in native space. The probabilistic volumes in stereotaxic space are now being used to extract time-radioactivity curves from dynamic PET recordings.

AB - Thedomestic pig is increasingly being used as an experimental model for brain imaging studies with positron emission tomography (PET). The recording of radiotracer uptake by PET gives functional and physiological information, but with poor spatial resolution. To date, anatomical regions of interest in pig brain have been defined in MR images obtained for each individual animal, because of the lack of a standard stereotaxic coordinate system for the pig brain. In order to define a stereotaxic coordinate system, we coregistered T1-weighted MR images from 22 male Göttingen minipigs and obtained a statistically defined surface rendering of the average minipig brain in which stereotaxic zero is defined by the position of the pineal gland. The average brain is now used as a target for registration of dynamic PET data, so that time-activity curves can be extracted from standard volumes of interest. In order to define these volumes, MR images from each individual pig were manually segmented into a total of 34 brain structures, including cortical regions, white matter, caudate and putamen, ventricular system, and cerebellum. The mean volumes of these structures had variances in the range of 10-20%. The 34 brain volumes were transformed into the common coordinate system and then used to generate surface renderings with probabilistic threshold greater than 50%. This probabilistic threshold gave nearly quantitative recovery of the mean volumes in native space. The probabilistic volumes in stereotaxic space are now being used to extract time-radioactivity curves from dynamic PET recordings.

U2 - 10.1006/nimg.2001.0910

DO - 10.1006/nimg.2001.0910

M3 - Journal article

C2 - 11697940

VL - 14

SP - 1089

EP - 1096

JO - NeuroImage

JF - NeuroImage

SN - 1053-8119

IS - 5

ER -

ID: 14944191