Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release

Research output: Contribution to journalJournal articleResearchpeer-review

Standard

Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release. / da Silva Pinheiro, Paulo César; de Wit, Heidi; Walter, Alexander M; Groffen, Alexander J; Verhage, Matthijs; Sørensen, Jakob Balslev.

In: Journal of Neuroscience, Vol. 33, No. 42, 16.10.2013, p. 16459-70.

Research output: Contribution to journalJournal articleResearchpeer-review

Harvard

da Silva Pinheiro, PC, de Wit, H, Walter, AM, Groffen, AJ, Verhage, M & Sørensen, JB 2013, 'Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release', Journal of Neuroscience, vol. 33, no. 42, pp. 16459-70. https://doi.org/10.1523/JNEUROSCI.2656-13.2013

APA

da Silva Pinheiro, P. C., de Wit, H., Walter, A. M., Groffen, A. J., Verhage, M., & Sørensen, J. B. (2013). Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release. Journal of Neuroscience, 33(42), 16459-70. https://doi.org/10.1523/JNEUROSCI.2656-13.2013

Vancouver

da Silva Pinheiro PC, de Wit H, Walter AM, Groffen AJ, Verhage M, Sørensen JB. Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release. Journal of Neuroscience. 2013 Oct 16;33(42):16459-70. https://doi.org/10.1523/JNEUROSCI.2656-13.2013

Author

da Silva Pinheiro, Paulo César ; de Wit, Heidi ; Walter, Alexander M ; Groffen, Alexander J ; Verhage, Matthijs ; Sørensen, Jakob Balslev. / Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release. In: Journal of Neuroscience. 2013 ; Vol. 33, No. 42. pp. 16459-70.

Bibtex

@article{e1bd41e3dcce414caea4719244e05bfc,
title = "Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release",
abstract = "Synaptotagmin-1 and -7 constitute the main calcium sensors mediating SNARE-dependent exocytosis in mouse chromaffin cells, but the role of a closely related calcium-binding protein, Doc2b, remains enigmatic. We investigated its role in chromaffin cells using Doc2b knock-out mice and high temporal resolution measurements of exocytosis. We found that the calcium dependence of vesicle priming and release triggering remained unchanged, ruling out an obligatory role for Doc2b in those processes. However, in the absence of Doc2b, release was shifted from the readily releasable pool to the subsequent sustained component. Conversely, upon overexpression of Doc2b, the sustained component was largely inhibited whereas the readily releasable pool was augmented. Electron microscopy revealed an increase in the total number of vesicles upon Doc2b overexpression, ruling out vesicle depletion as the cause for the reduced sustained component. Further experiments showed that, in the absence of Doc2b, the refilling of the readily releasable vesicle pools is faster, but incomplete. Faster refilling leads to an increase in the sustained component as newly primed vesicles fuse while the [Ca(2+)]i following stimulation is still high. We conclude that Doc2b acts to inhibit vesicle priming during prolonged calcium elevations, thus protecting unprimed vesicles from fusing prematurely, and redirecting them to refill the readily releasable pool after relaxation of the calcium signal. In sum, Doc2b favors fast, synchronized release, and limits out-of-phase secretion.",
author = "{da Silva Pinheiro}, {Paulo C{\'e}sar} and {de Wit}, Heidi and Walter, {Alexander M} and Groffen, {Alexander J} and Matthijs Verhage and S{\o}rensen, {Jakob Balslev}",
year = "2013",
month = oct,
day = "16",
doi = "10.1523/JNEUROSCI.2656-13.2013",
language = "English",
volume = "33",
pages = "16459--70",
journal = "The Journal of neuroscience : the official journal of the Society for Neuroscience",
issn = "0270-6474",
publisher = "Society for Neuroscience",
number = "42",

}

RIS

TY - JOUR

T1 - Doc2b synchronizes secretion from chromaffin cells by stimulating fast and inhibiting sustained release

AU - da Silva Pinheiro, Paulo César

AU - de Wit, Heidi

AU - Walter, Alexander M

AU - Groffen, Alexander J

AU - Verhage, Matthijs

AU - Sørensen, Jakob Balslev

PY - 2013/10/16

Y1 - 2013/10/16

N2 - Synaptotagmin-1 and -7 constitute the main calcium sensors mediating SNARE-dependent exocytosis in mouse chromaffin cells, but the role of a closely related calcium-binding protein, Doc2b, remains enigmatic. We investigated its role in chromaffin cells using Doc2b knock-out mice and high temporal resolution measurements of exocytosis. We found that the calcium dependence of vesicle priming and release triggering remained unchanged, ruling out an obligatory role for Doc2b in those processes. However, in the absence of Doc2b, release was shifted from the readily releasable pool to the subsequent sustained component. Conversely, upon overexpression of Doc2b, the sustained component was largely inhibited whereas the readily releasable pool was augmented. Electron microscopy revealed an increase in the total number of vesicles upon Doc2b overexpression, ruling out vesicle depletion as the cause for the reduced sustained component. Further experiments showed that, in the absence of Doc2b, the refilling of the readily releasable vesicle pools is faster, but incomplete. Faster refilling leads to an increase in the sustained component as newly primed vesicles fuse while the [Ca(2+)]i following stimulation is still high. We conclude that Doc2b acts to inhibit vesicle priming during prolonged calcium elevations, thus protecting unprimed vesicles from fusing prematurely, and redirecting them to refill the readily releasable pool after relaxation of the calcium signal. In sum, Doc2b favors fast, synchronized release, and limits out-of-phase secretion.

AB - Synaptotagmin-1 and -7 constitute the main calcium sensors mediating SNARE-dependent exocytosis in mouse chromaffin cells, but the role of a closely related calcium-binding protein, Doc2b, remains enigmatic. We investigated its role in chromaffin cells using Doc2b knock-out mice and high temporal resolution measurements of exocytosis. We found that the calcium dependence of vesicle priming and release triggering remained unchanged, ruling out an obligatory role for Doc2b in those processes. However, in the absence of Doc2b, release was shifted from the readily releasable pool to the subsequent sustained component. Conversely, upon overexpression of Doc2b, the sustained component was largely inhibited whereas the readily releasable pool was augmented. Electron microscopy revealed an increase in the total number of vesicles upon Doc2b overexpression, ruling out vesicle depletion as the cause for the reduced sustained component. Further experiments showed that, in the absence of Doc2b, the refilling of the readily releasable vesicle pools is faster, but incomplete. Faster refilling leads to an increase in the sustained component as newly primed vesicles fuse while the [Ca(2+)]i following stimulation is still high. We conclude that Doc2b acts to inhibit vesicle priming during prolonged calcium elevations, thus protecting unprimed vesicles from fusing prematurely, and redirecting them to refill the readily releasable pool after relaxation of the calcium signal. In sum, Doc2b favors fast, synchronized release, and limits out-of-phase secretion.

U2 - 10.1523/JNEUROSCI.2656-13.2013

DO - 10.1523/JNEUROSCI.2656-13.2013

M3 - Journal article

C2 - 24133251

VL - 33

SP - 16459

EP - 16470

JO - The Journal of neuroscience : the official journal of the Society for Neuroscience

JF - The Journal of neuroscience : the official journal of the Society for Neuroscience

SN - 0270-6474

IS - 42

ER -

ID: 61998527