A simple, clinically applicable motor learning protocol to increase push-off during gait: A proof-of-concept

Research output: Contribution to journalJournal articlepeer-review

Documents

  • Fulltext

    Final published version, 1.33 MB, PDF document

OBJECTIVE: Task-specific training is often used in functional rehabilitation for its potential to improve performance at locomotor tasks in neurological populations. As push-off impairment are often seen with these patients, this functional approach shows potential to retrain gait overground to normalize the gait pattern and retrain the ability to improve gait speed. The main objective of this project was to validate, in healthy participants, a simple, low-cost push-off retraining protocol based on task-specific training that could be implemented during overground walking in the clinic.

METHODS: 30 healthy participants walked in an 80-meter long corridor before, during, and after the application of an elastic resistance to the right ankle. Elastic tubing attached to the front of a modified ankle-foot orthosis delivered the resistance during push-off. Relative ankle joint angular displacements were recorded bilaterally and continuously during each walking condition.

RESULTS: On the resisted side, participants presented aftereffects (increased peak plantarflexion angle from 13.4±4.2° to 20.0±6.4°, p<0.0001 and increased peak plantarflexion angular velocity from 145.8±22.7°/s to 174.4±37.4°/s, p<0.0001). On the non-resisted side, aftereffects were much smaller than on the resisted side suggesting that the motor learning process was mainly specific to the trained leg.

CONCLUSION: This study shows the feasibility of modifying push-off kinematics using an elastic resistance applied at the ankle while walking overground. This approach represents an interesting venue for future gait rehabilitation.

Original languageEnglish
Article numbere0245523
JournalPLoS ONE
Volume16
Issue number1
Number of pages14
ISSN1932-6203
DOIs
Publication statusPublished - 2021

    Research areas

  • Adult, Biomechanical Phenomena, Female, Gait, Humans, Learning, Male, Rehabilitation/methods, Young Adult

Number of downloads are based on statistics from Google Scholar and www.ku.dk


No data available

ID: 257239389