Transient receptor potential (TRP) channels mRNA transcripts in the lumbar intervertebral discs: biomarkers for inflammation, pain, disability, and clinical outcome

Research output: Contribution to journalJournal articleResearchpeer-review

Transient receptor potential (TRP) channels are widely expressed cation channels that play an essential role in mediating Ca2+ homeostasis and are considered potential regulators of inflammatory pain. This study investigates the expression of the TRP channel subtypes TRPV1, TRPV4, TRPC6, TRPM2, TRPM8 in lumbar intervertebral disc (IVD) biopsies from patients with chronic low back pain (LBP). We determined the expression of these TRP channel subtypes in the annulus fibrosus (AF) and the nucleus pulposus (NP) from 46 patients with LBP undergoing 1-2 level lumbar fusion surgery for degenerative disc disease. The mRNA transcripts were analyzed using quantitative real-time polymerase chain reaction (RT-qPCR), and the expression levels were compared against visual analog scale (VAS) and oswestry disability index (ODI) scores (0-100) for pain and disability. A significant positive correlation was demonstrated between VAS score and the mRNA expression of TRPV1, TRPC6, TRPM2, TRPM8 in the AF. We also found a significant positive correlation between ODI scores and expression of TRPV1 and TRPM8. Further, there is a significant positive correlation between TNF-alpha and TRPV1, TRPM2 and TRPM8 expression in the AF, and IL-6 to TRPV1 in the NP. Interestingly, when investigating treatment response via a 12-month postoperative follow-up ODI, we found a significant correlation between only TRPV1 expression at baseline and the follow-up ODI scores, which indicates this marker could predict the effectiveness of surgery. These results strongly suggest an association between pain, inflammatory mediators, and TRP channel expression in lumbar disc biopsies of patients with chronic LBP.

Original languageEnglish
JournalMolecular and Cellular Biochemistry
Volume478
Issue number1
Pages (from-to)121-130
Number of pages10
ISSN0300-8177
DOIs
Publication statusPublished - 2023

    Research areas

  • Low back pain, TRP channels, Lumbar fusion surgery, Degenerative disc, NERVE GROWTH-FACTOR, EXPRESSION, ACTIVATION

ID: 312467549