Functional architecture of the synaptic transducers at a central glutamatergic synapse

Research output: Working paperPreprintResearch

Neuronal synapses transduce information via the consecutive action of three transducers: voltage-gated Ca2+-channels, fusion-competent synaptic vesicles, and postsynaptic receptors. Their physical distance is thought to influence the speed and efficiency of neurotransmission. However, technical limitations have hampered resolving their nanoscale arrangement. Here, we developed a new method for live-labeling proteins for electron microscopy (EM), revealing that release-competent vesicles preferentially align with Ca2+-channels and postsynaptic AMPA receptors within 20-30 nm and thereby forming a transsynaptic tripartite nanocomplex. Using functional EM, we show that single action potentials cause vesicles within the nanocomplex to fuse with a 50% probability. The loss of the presynaptic scaffold disrupts the formation of the tripartite transducers. Strikingly, the forced transsynaptic alignment of the Ca2+-channel subunit α2δ1 and AMPA receptors suffice to restore neurotransmission in a scaffold lacking synapse. Our results demonstrate a synaptic transducer nanocomplex that actively contributes to the organization of central synapses
Original languageEnglish
Number of pages1
DOIs
Publication statusPublished - 2020
Externally publishedYes

ID: 334078983